Effects of pore size and implant volume of porous hydroxyapatite/collagen (HAp/Col) on bone formation in a rabbit bone defect model.

نویسندگان

  • Akio Tsuchiya
  • Shinichi Sotome
  • Yoshinori Asou
  • Masanori Kikuchi
  • Yoshihisa Koyama
  • Tetsuro Ogawa
  • Junzo Tanaka
  • Kenichi Shinomiya
چکیده

A porous hydroxyapatite/collagen composite (HAp/Col) was developed that consists of hydroxyapatite nanocrystals and atelocollagen. In this study, cylindrical (diameter: 5 mm, height: 3 mm) porous HAp/Col implants with different pore sizes (diameter: 160 or 290 microm) were prepared, and the influences of pore size and implanted volume were evaluated using a rabbit bone defect model. In the implant groups, one or three (diameter: 5 mm, total height: 9 mm) implants were transplanted into bone holes created in the anteromedial site of the proximal tibiae, while a group without implantation was used as a control. Histological observation revealed that at two weeks after implantation, bone formation was initiated not only from the periosteum but in regions where the implants bordered on bone marrow. At four weeks, bone formation expanded from the marrow cavity side into the center of the implants, particularly in those implants with large pores. At twelve weeks, four implant groups showed repair of cortical defects and implant absorption, which was thought to be the result of natural bone remodeling mechanisms. The control group showed bone formation developed from the periosteum without bone induction in the marrow cavity, and at four weeks, the bone hole was almost healed. pQCT analysis revealed that the expansion rates of bone tissue were higher in the large-pore implant groups than in the small-pore groups. These data demonstrate the osteoconductivity of porous HAp/Col and the importance of its porous structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of the systemic administration of alendronate on bone formation in a porous hydroxyapatite/collagen composite and resorption by osteoclasts in a bone defect model in rabbits.

Several bisphosphonates are now available for the treatment of osteoporosis. Porous hydroxyapatite/collagen (HA/Col) composite is an osteoconductive bone substitute which is resorbed by osteoclasts. The effects of the bisphosphonate alendronate on the formation of bone in porous HA/Col and its resorption by osteoclasts were evaluated using a rabbit model. Porous HA/Col cylinders measuring 6 mm ...

متن کامل

Comparative Study of Bone Repair Using Porous Hydroxyapatite/ β-Tricalcium Phosphate and Xenograft Scaffold in Rabbits with Tibia Defect

Background: Bone tissue engineering requires materials that are biocompatible, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells for new bone formation. The aim of this study was to compare the osteogenic potential of xenograft with hydroxyapatite/β- tricalcium phosphate (HA/β-TCP) scaffold. Methods: New Zealand rabbits (...

متن کامل

Development and Evaluation of Superporous Ceramics Bone Tissue Scaffold Materials with Triple Pore Structure A) Hydroxyapatite, B) Beta-Tricalcium Phosphate

Hydroxyapatite ceramics (HAp) have been used as bone graft materials, due to their excellent biocompatibility and osteoconductivity. Moreover, they had a wide range of porosity for using various bone defect parts. For example, HAp from 0 to 15 % porosity with high strength was useful as an ilium spacer, intervertebral spacer which requires high strength. HAp from 30 to 40% porosity was useful a...

متن کامل

Hydroxyapatite/collagen bone-like nanocomposite.

Our group has succeeded to synthesize material with bone-like nanostructure and bone-like inorganic and organic composition via self-organization mechanism between them using simultaneous titration method under controlled pH and temperature. The hydroxyapatite/collagen (HAp/Col) bone-like nanocomposite completely incorporated into bone remodeling process to be substituted by new bone. Cells cul...

متن کامل

Development and Characterization of a Bioinspired Bone Matrix with Aligned Nanocrystalline Hydroxyapatite on Collagen Nanofibers

Various kinds of three-dimensional (3D) scaffolds have been designed to mimic the biological spontaneous bone formation characteristics by providing a suitable microenvironment for osteogenesis. In view of this, a natural bone-liked composite scaffold, which was combined with inorganic (hydroxyapatite, Hap) and organic (type I collagen, Col) phases, has been developed through a self-assembly pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medical and dental sciences

دوره 55 1  شماره 

صفحات  -

تاریخ انتشار 2008